首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5533篇
  免费   531篇
  国内免费   334篇
化学   1792篇
晶体学   56篇
力学   2051篇
综合类   64篇
数学   683篇
物理学   1752篇
  2024年   3篇
  2023年   29篇
  2022年   73篇
  2021年   103篇
  2020年   126篇
  2019年   105篇
  2018年   113篇
  2017年   159篇
  2016年   199篇
  2015年   143篇
  2014年   218篇
  2013年   409篇
  2012年   242篇
  2011年   290篇
  2010年   239篇
  2009年   265篇
  2008年   336篇
  2007年   317篇
  2006年   301篇
  2005年   288篇
  2004年   297篇
  2003年   279篇
  2002年   180篇
  2001年   202篇
  2000年   152篇
  1999年   175篇
  1998年   129篇
  1997年   120篇
  1996年   106篇
  1995年   121篇
  1994年   89篇
  1993年   97篇
  1992年   85篇
  1991年   74篇
  1990年   48篇
  1989年   44篇
  1988年   49篇
  1987年   34篇
  1986年   26篇
  1985年   20篇
  1984年   17篇
  1983年   12篇
  1982年   17篇
  1981年   17篇
  1980年   13篇
  1979年   6篇
  1978年   6篇
  1977年   12篇
  1974年   4篇
  1971年   3篇
排序方式: 共有6398条查询结果,搜索用时 187 毫秒
21.
Photopolymerization is a phenomenon that is the basis of much of today's microfabrication technology and intense research is conducted to improve its control and the characteristics of end products for a variety of applications. The design of microscopic structures often relies on the accurate knowledge and modeling of photopolymer's behavior upon exposure, i.e. the Dill parameters, for each radiation species of interest and therefore the development of flexible characterization techniques is of great importance. SU‐8 is a popular compound that is representative of a whole class that relies on cationic polymerization, where an acid is obtained via photolysis of an onium salt during exposure. Here we report on the observation of SbF6? via laser desorption mass spectrometry on SU‐8 exposed to UV light at the wavelength of 365 nm and demonstrate that the yield of this counter‐anion as a function of exposure is consistent with the Dill C parameter value available in the literature. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 967–972  相似文献   
22.
23.
A novel series of mixed-ligand complexes of 5,5′-{(1E,1E′)-1,4-phenelynebis(diazene-2,1-diyl)}bis(quinolin-8-ol) (H2L1) as a primary ligand and 4-aminoantipyrine(L2) as a secondary ligand with Mn(II) ion were prepared using two general formulae: [Mn2(H2L1)2(L2)2X4].4Cl (X = OH2( 1 ), ONO2( 2 ), Cl=nil; OAc( 3 ), Cl = nil) and [Mn2(H2L1)(L2)2(O2SO2)2]( 4 ). Free ligands and their complexes were characterized. Electronic absorption spectra of the mixed-ligand complexes indicate a distorted octahedral geometry around the central metal ion, and the anions X are in the axial positions for all compounds. The ligands behave in a neutral bidentate manner, through nitrogen atoms and oxygen atoms of the carbonyl group (L2), whereas H2L1 coordinated through nitrogen and OH groups as a neutral bidentate ligand. All complexes do not contain coordinated water molecules, but complex ( 1 ) contains four water molecules. The water molecules are removed in a single step. The complexes exhibited magnetic susceptibility corresponding to five unpaired electrons. The antimicrobial activity of the Mn(II) mixed-ligand complexes ( 1–4 ) against two gram-positive bacteria, three local gram-negative bacteria, and three fungi species was tested. Mn(II) mixed-ligand complex ( 2 ) exhibited significant antibacterial activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas sp. Mixed-ligand complex ( 2 ) exhibited a high potential cytotoxicity against the growth of human lung cancer cells.  相似文献   
24.
《Mendeleev Communications》2020,30(5):666-668
  1. Download : Download high-res image (112KB)
  2. Download : Download full-size image
  相似文献   
25.
In this paper, the three-dimensional (3D) interfacial fracture is analyzed in a one-dimensional (1D) hexagonal quasicrystal (QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle. Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation. The singularity of stresses near the crack front is investigated, and the stress intensity factors (SIFs) as well as energy release rates (ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.  相似文献   
26.
In this work crack formation and development is addressed and implemented in a planar layered reinforced-concrete beam element. The crack initiation and growth is described using the strength criterion in conjunction with exact kinematics of the interlayer connection. In this way a novel embedded-discontinuity beam finite element is derived in which the tensile stresses in concrete at the crack position reaching the tensile strength will trigger a crack to open. Since the element is multi-layered, in this way the crack is allowed to propagate through the depth of the beam. The cracked layer(s) will involve discontinuity in the cross-sectional rotation equal to the crack-profile angle, as well as a discontinuity in the position vector of the layer’s reference line. A bond–slip relationship is superimposed onto this model in a kinematically consistent manner with reinforcement being treated as an additional layer of zero thickness with its own material parameters and a constitutive law implemented in the multi-layered beam element.  相似文献   
27.
《印度化学会志》2023,100(1):100860
This study investigates the influence of synthesis processes such as sonication, sol-gel, and microwave on the production of highly crystalline Lanthanum oxide nanoparticles (La2O3) employing Lanthanum nitrate and Ammonium hydroxide (NH4OH) as precursors. X-ray diffraction (XRD), particle size analysis (DLS), Field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible absorption spectroscopy (UV–Vis), and electrochemical impedance spectroscopy (EIS) were used to examine the most effective processing method and its effects on the nanoparticle characteristics, such as structure, morphology, and optical and electrical behavior. Sonication produces La2O3 NPs with a smaller crystalline size, an agglomerated nanorod structure, a higher bandgap, and better electrical responsiveness than sol-gel and microwave techniques. Structural and optical characterization tests discovered this. The photocatalytic degradation activity of cationic Safranin and anionic Congo red dye exhibits degradation efficiency of around 90.13% and 89.66%, respectively.  相似文献   
28.
Nitroxynil(NIT) is a commonly used anti-liver fluke drug for cattle and sheep, Its solubility is closely related to its preparation. In this work, the molar solubility of NIT in nine pure solvents (methanol, ethanol, 1,2-propanediolethyl, isopropanol, ethyl acetate, acetonitrile, n-butanol, phemethylol) and two kinds of binary mixtures with different ratio(ethanol + phemethylol; ethanol + acetonitrile) was determined by shake flask method over the temperature from 278.15 ~ 323.15 K at atmosphere pressure. Results show that the solubility of NIT in all tested solvents was increased with raised temperature. In mono-solvents, the mole fraction solubility of NIT was highest in phemethylol and the solubility order is: phemethylol > acetonitrile > ethyl acetate > methanol > n-butanol > ethanol > 1,2-propanediolethyl > isopropanol > water. In binary solvents, the mole fraction solubility increased with increasing ratio of phemethylol/acetonitrile. In mono-solvents, the modified Apelblat equation, λh equation, Van't Hoff model were applied to correlate the solubility data. In binary solvents, the modified Apelblat equation, λh equation, GSM model and Jouyban-Acree model were to correlate the solubility data. Solubility order of NIT in nine pure solvent and two binary solvent systems were analysed by using the Hansen solubility parameter (HSP). Activity coefficient was to access the solute–solvent molecular interactions. In addition, the dissolution of NIT is an endothermic and entropy-friendly process, since thermodynamic parameters such as enthalpy, entropy, and apparent standard Gibbs free energy are all greater than zero. The results will supply some essential data on recrystallization process, purification and formulation development of NIT in pharmaceutical applications.  相似文献   
29.
Polymer nanocapsules with high diffusion‐barrier performance were designed following simple thermodynamic considerations. Hindered diffusion of the enclosed material leads to high encapsulation efficiencies (EEs), which was demonstrated based on the encapsulation of highly volatile compounds of different chemical natures. Low interactions between core and shell materials are key factors to achieve phase separation and a high diffusion barrier of the resulting polymeric shell. These interactions can be characterized and quantified using the Hansen solubility parameters. A systematic study of our copolymer system revealed a linear relationship between the Hansen parameter for hydrogen bonding (δh) and encapsulation efficiencies which enables the prediction of encapsulated amounts for any material. Furthermore EEs of poorly encapsulated materials can be increased by mixing them with a mediator compound to give lower overall δh values.  相似文献   
30.
The optimum condition of processing parameters (mixing temperature, rotor speed, fill factor, and blend ratio) and prediction models for the best key mechanical properties of ethylene propylene diene terpolymer/polypropylene thermoplastic vulcanizates (EPDM/PP TPVs) was investigated by using the Taguchi's optimization technique and data analysis. The results reveal that all of the processing parameters affected significantly the mechanical properties of the EPDM/PP TPVs, but specifically the blend ratio contributed more than 90% in effect size on tensile strength and tension set. There were three main factors, the mixing temperature, the fill factor, and the blend ratio, influencing the elongation at break. Furthermore, the mathematic models were effective and reliable in predicting the properties of TPVs. The correlation of mechanical properties, stress relaxation, and phase morphologies of the TPVs prepared from the predicted models was also investigated. It can be summarized that the morphological structure and stress relaxation of the TPVs were strongly governed by the EPDM content in the blend ratio. That is, the higher the EPDM content, the better phase morphology having smaller size of the vulcanized EPDM particles distributed in the PP matrix and the higher rate of stress relaxation. Moreover, these two properties were then principally pushing the mechanical characteristics of the EPDM/PP TPVs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号